The global AI-based clinical trial solutions for patient matching market size is expected to reach USD 2,876.37 million by 2032, according to a new study by Polaris Market Research. The report “AI-based Clinical Trial Solutions for Patient Matching Market Share, Size, Trends, Industry Analysis Report, By Therapeutic Application; By End-Use (Pharmaceutical Companies, Academia, Others); Segment Forecast, 2023 - 2032” gives a detailed insight into current market dynamics and provides analysis on future market growth.
The patient matching process is a critical component of clinical trials, as it involves identifying and selecting eligible patients who meet specific criteria for participation. Traditionally, this process has been time-consuming and inefficient, often leading to delays in trial enrollment and increased costs. However, the emergence of AI-based clinical trial solutions has revolutionized patient matching, significantly improving efficiency and accuracy.
AI algorithms can analyze vast amounts of patient data, including medical records, genetic profiles, and demographic information, to identify suitable candidates for clinical trials. These algorithms can quickly process and extract relevant information, enabling researchers and trial coordinators to identify potential participants more effectively. By automating this process, AI-based solutions significantly reduce the time and effort required for patient matching, accelerating the overall trial timeline.
One of the key advantages of AI in patient matching is its ability to identify patients who may qualify for multiple trials simultaneously. By considering a broader range of inclusion and exclusion criteria, AI algorithms can match eligible patients to numerous trials, maximizing recruitment potential and expanding the pool of available participants. This enhances the efficiency of patient matching and increases the likelihood of trial success by ensuring a diverse and representative participant population.
Do you have any questions? Would you like to request a sample or make an inquiry before purchasing this report? Simply click the link below: https://www.polarismarketresearch.com/industry-analysis/ai-based-clinical-trial-solutions-for-patient-matching-market/request-for-sample
AI-based clinical trial solutions for patient matching are experiencing several notable trends in the market. There is increasing adoption of these solutions by pharmaceutical companies, CROs, and academic institutions, recognizing the potential of AI to enhance patient recruitment and enrollment in clinical trials. This growing demand drives the development of AI-driven platforms and tools specifically designed for patient matching.
With the advancement of machine learning algorithms used in AI solutions, these algorithms, such as deep learning, NLP, and reinforcement learning, are becoming more sophisticated and capable of analyzing complex patient data. Real-time data integration is also emerging, enabling data integration from EHRs, wearables, and other sources to provide up-to-date and comprehensive patient profiles.
Furthermore, there is a strong emphasis on data privacy and security. AI-based clinical trial solutions incorporate robust measures to protect patient information in compliance with regulations like GDPR and HIPAA. Collaboration and partnerships between AI solution providers, pharmaceutical companies, and research institutions are also on the rise, leading to the development of tailored AI solutions for patient matching that meet the specific needs of clinical trials.
Regulatory bodies such as the FDA are guiding the use of AI in clinical trials, ensuring the responsible and ethical application of AI-based solutions, and addressing issues of validation, transparency, and interpretability of AI algorithms used in patient matching.
AI-based Clinical Trial Solutions for Patient Matching Market Report Highlights
Polaris Market Research has segmented the AI-based Clinical Trial Solutions for Patient Matching market report based on therapeutic application, end-use, and region:
AI-based Clinical Trial Solutions for Patient Matching, Therapeutic Application Outlook (Revenue - USD Million, 2019 - 2032)
AI-based Clinical Trial Solutions for Patient Matching, End-Use Outlook (Revenue - USD Million, 2019 - 2032)
AI-based Clinical Trial Solutions for Patient Matching, Regional Outlook (Revenue - USD Million, 2019 - 2032)
Report Attributes |
Details |
Market size value in 2023 |
USD 285.88 million |
Revenue forecast in 2032 |
USD 2,876.37 million |
CAGR |
29.2% from 2023 – 2032 |
Base year |
2022 |
Historical data |
2019 – 2021 |
Forecast period |
2023 – 2032 |
Quantitative units |
Revenue in USD million and CAGR from 2023 to 2032 |
Segments Covered |
By Therapeutic Application, By End-Use, By Region |
Regional scope |
North America, Europe, Asia Pacific, Latin America; Middle East & Africa |
Key Companies |
Unlearn.AI, Inc.; Antidote Technologies; Inc.; Deep6.ai; Mendel.ai; Aris Global; Deep Lens; AmerisourceBergen Corporation; Koneksa; Microsoft Corporation; GNS Healthcare. |
For Specific Research Requirements |